

GRACE grant no 679266

Strategic Net Environmental Benefit Analysis (sNEBA) for combat of oilspill in open waters – Matrices for environmental sensitivity and effects

Prepared under contract from the European Commission Contract n° 679266 Research and Innovation Action Innovation and Networks Executive Agency Horizon 2020 BG-2014-2015/BG2015-2

Project acronym:	GRACE
Project full title:	Integrated oil spill response actions and environmental effects
Start of the project:	01 March 2016
Duration:	42 months
Project coordinator:	Finnish Environment Institute (SYKE)
Project website	http://www.grace-oil-project.eu

Deliverable title:	Environmental matrix
Deliverable n°:	D5.5
Nature of the deliverable:	Report
Dissemination level:	Public, enclosures can be required

WP responsible:	WP5
Lead beneficiary:	AU

Due date of deliverable:	28 th February2018
Actual submission date:	1 st May 2018

Deliverable status:

Version	Status	Date	Author	Approved by
1.0	draft	24 th April 2018	Susse Wegeberg (AU), Janne Fritt-Rasmussen (AU) and Kim Gustavson (AU)	WP5 members
1.1	final	30 th April 2018		Steering Group

Table of Content

Executive summary	4
Introduction	5
Background for sNEBA components and input	5
Considered consequences and benefits by oil dispersion and ISB for seabirds on sea surface	5
Analysis of potential effects of dispersed oil on copepods in the water column	5
Analysis of potential effects of dispersed oil and ISB residues on seabed organisms	6
Analysis of potential effects of dispersed oil on the coastal ecosystems	6
Damage reduction	9
sNEBA process	9
Environmental matrices	0
Environmental sensitivity 1	0
MATRIX X1 – Key / sensitive organisms according to seasons1	10
MATRIX X2 - overview	11
MATRIX X2 – SS (sea surface) 1	12
MATRIX X2 – WC (water column) 1	14
MATRIX X2 – SB (seabed)1	16
MATRIX X2 – C (coast) 1	18
MATRIX X3 (Environmental sensitivity, compiled and commented)	19
Oil spill specifications	20
Oil spill characteristics	20
MATRIX Y1 2	20
Ecotoxicological profiles and information for each spatial compartment	20
MATRIX Y2	20
Oil spill fate and damage reduction from response2	21
MATRIX Y3	21
References	22

Executive summary

.

A Strategic Net Environmental Benefit Analysis (sNEBA) is a planning tool for oil spill response preparedness. The overall aims of the analysis are to identify the most environmental beneficial methods for combating an oil spill in a specific sea area. sNEBA compiles information and data on 1) sensitivity of ecological important organisms in selected sea area, 2) estimates for fate and distribution of oil spill in the selected sea area.

Evaluation of oil spill combat techniques at sea can been performed for, e.g., a location, sea area or a region. This evaluation focuses on minimization of the combined environmental impacts of both oil spill and oil spill response techniques. Present available oil spill response techniques include mechanical recovery, chemical dispersion of oil and *in situ* burning (burning of oil directly on the sea surface), but also doing nothing, and leave the oil to be natural dispersed and degraded, may be the (only) option. This evaluation can be completed by assessing the environmental pros and cons of the different oil spill response techniques, and for which the concept of a strategic Net Environmental Benefit Analysis (sNEBA) was developed.

Based on the model simulation results (or estimates) from the oil spill scenarios, identification of sensitive and ecological important organisms at risk to potential oil exposure can be performed, and the sensitivity of the organisms associated to sea surface, water column, seabed, coast and ecosystems characteristic of these spatial compartments can be assessed.

Generic matrices for the knowledge components that needs to go into the analysis are developed and presented.

Introduction

A Strategic Net Environmental Benefit Analysis (sNEBA) is a planning tool for oil spill response preparedness. The overall aims of the analysis are to identify the most environmental beneficial methods for combating an oil spill in a specific sea area. sNEBA compiles information and data on 1) sensitivity of ecological important organisms in selected sea area, 2) estimates for fate and distribution of oil spill in the selected sea area.

Evaluation of oil spill combat techniques at sea can been performed for, e.g., a location, sea area or a region. This evaluation focuses on minimization of the combined environmental impacts of both oil spill and oil spill response techniques. Present available oil spill response techniques include mechanical recovery, chemical dispersion of oil and *in situ* burning (burning of oil directly on the sea surface), but also doing nothing, and leave the oil to be natural dispersed and degraded, may be the (only) option. This evaluation can be completed by assessing the environmental pros and cons of the different oil spill response techniques, and for which the concept of a strategic Net Environmental Benefit Analysis (sNEBA) was developed.

Information regarding environmental (side) effects can be obtained from, e.g., IOGP database (<u>www.neba.arcticresponsetechnology.org</u>) and Wegeberg et al. (2017, and references herein).

The sNEBA includes an analysis, which is based on oil spill scenarios and published as well as expert knowledge on the environment in the area in question. The environmental knowledge included in the sNEBA, to achieve the overall environmental optimal oil spill combating strategy, is knowledge on sensitivity of ecological important organisms for oil pollution in all marine spatial compartments; sea surface, water column, seabed, and coast for all seasons, biology, and ecotoxicology of oil (naturally and chemically dispersed as well as oil burning residues). Furthermore, the reduction in environmental damage is assessed according to oil spill response method efficiencies.

Matrices for the knowledge components that needs to go into the analysis are developed (Matrix X1-3, Y1-3) (Figure 1). The matrices are thought to be generic and can be used for sNEBAs performed for sea areas/ regions not within the GRACE sea areas. The information on the fate and distribution of the oil spill in the specific sea area can be obtained from model simulations of dispersion of dissolved oil components during an oil spill as well as oil slick trajectories, or estimates based on trends in oil types fate and behavior at sea. If a sNEBA is performed for an area of high oil spill risk or for an area considered to particular sensitive to oil spill, oil spill model simulations are required. If the sNEBA is performed for, for instance, a very large area, less detailed estimates may be sufficient and more meaningful.

Background for sNEBA components and input

Based on the simulation results (or estimates), identification of sensitive and ecological important organisms at risk to potential oil exposure can be performed, and the sensitivity of the organisms associated to sea surface, water column, seabed, coast and ecosystems characteristic of these spatial compartments can be assessed. To explain the sNEBA process and the input requirements, a short and generic description for each spatial compartment is given below based on Wegeberg et al. (2016, 2017 and references herein).

Considered consequences and benefits by oil dispersion and ISB for seabirds on sea surface

To the benefit of the organisms associated to the sea surface, removal of the oil from the sea surface will prevent smothering of feathers and fur. Removal or significant reduction of the spilled oil in open water will also prevent or reduce impacts on the coast.

The response techniques, chemical dispersal and ISB, are thus considered as beneficial in protection of seabirds congregated on the sea surface for feeding or moulting. However, it should be noted that burning residues from ISB also may possess a risk for smothering of seabird feathers, but by ensuring a high burning efficiency this risk can be further reduced.

Analysis of potential effects of dispersed oil on copepods in the water column

The dispersion model simulations may indicate dilution capacity and hence how oil concentrations are dispersed into the water column, and how it distributes horizontally. Calculations of water volumes with toxic oil concentrations, based on the simulations of dissolved oil components dispersion, indicate the OMFANG of the risk of effects on the organisms in the water column. The vertical distribution of toxic oil concentrations covers the upper part of the water column, which also may be occupied by a high fraction of plankton. Hence,

there can be an overlap between the zones with toxic concentrations (acute lethal and sublethal) and high density of plankton. Besides the toxic concentrations of oil components, dispersal of oil may result in oil droplets, which can be perceived as food items and taken up by, for instance, copepods. This may pose a risk, especially during summer, when the copepods are feeding and lead to accumulation of oil components in these organisms. However, dispersal of oil during wintertime may not pose the same risk as the copepods do not feed during this season.

Calanus-species and larger crustaceans in the water column provide an important food resource for higher trophic levels, but also for pelagic larvae of potentially key species for an area. Oil spill in, for instance, high productive areas may thus have direct and indirect impacts on the ecosystem due to the toxic effects on organisms at lower trophic levels and the derived impact on the higher trophic levels due to changes in food availability. The toxic effects of oil components may hence be transmitted through the food web and cause so called cascade effects.

In such a case, dispersion of large oil spills may not be recommended in the summer time, as it may provide a risk of impacting ecosystem key species, for instance, copepods (*Calanus* spp.) by relatively large water volumes and areas with toxic oil concentrations depending of the dilution capacity of the water body. During winter month, the, e.g., copepods may be less sensitive to oil exposure and hence dispersion may be a solution for combating oil spill during that season.

It may also be expected that dispersion of smaller oil volumes may have only insignificant effects on the environment as earlier simulations results show that concentrations of dispersed oil in the water column is positively correlated with the volume of oil spill dispersed.

Analysis of potential effects of dispersed oil and ISB residues on seabed organisms

The seabed organisms (benthos), e.g., bivalves, corals, brittle stars, sea anemones, polychaetes etc., and demersal fish may not be impacted by toxic concentrations of dispersed oil if the area has sufficient depth. The plume of dispersed oil in toxic concentration will most often not reach greater depths than app. 20 m, according to earlier simulations and depending on dilution capacity of the water body. Oil spill from a well head at the seabed is not expected to cause stronger effects, as simulations of such oil spill show that the oil, due to oil's buoyancy and not very deep waters, will be transported to the sea surface at a fast rate.

However, if dispersed at the wellhead at great depths, it had been seen, in connection with the oil spill response strategy from the Macondo blow-out, that buoyant plume of dispersed oil can may be formed at greater depths.

The risk of indirect effects of toxic oil concentrations through food web impacts may be more imminent. If the biomass from the primary and secondary production in the water column above the seabed is reduced, food propagated to the benthic organisms will decline and the benthic community is less sustained. Bivalves, for instance, may provide food for seabirds and marine mammals.

From in situ burning, residues or particles may pose a risk of more direct effect on the benthos if they sink. Mats of partly burned oil may lie on the sea bottom. Environmental effects of these residues on benthos and, in particular, demersal fish has only been sporadic elucidated, but studies have been initiated.

Another factor, which may be relevant in areas with oxygen depletion, is the effect of the oxygen consuming degradation process of oil in the sediment. This is an impact yet to be investigated.

Analysis of potential effects of dispersed oil on the coastal ecosystems

If present, the richest part of the kelp forest is often in the upper part of the subtidal zone at wave exposed coastlines, which is also the depths where concentrations of dispersed oils may be highest, as shown in earlier simulations.

If an oil spill is not combated offshore and drifts towards a wave protected coast, and where the oil hence not will be dispersed naturally, it may beach. On such coasts, the richest tidal communities are found, which thus may be impacted by the beaching oil.

Protected coasts, may moreover have very limited self-cleaning potential, why there is risk of preserving oil for example buried in the beach sediment or between boulders and in crevices. Such oil may pose a source

of continuous contamination to the environment. In connection with the *Exxon Valdez* accident in 1989, small amount of buried oil is still present on the coast, also surprisingly far away from the location of the accident.

Beaching oil will furthermore pose a risk for coastal fish spawning areas.

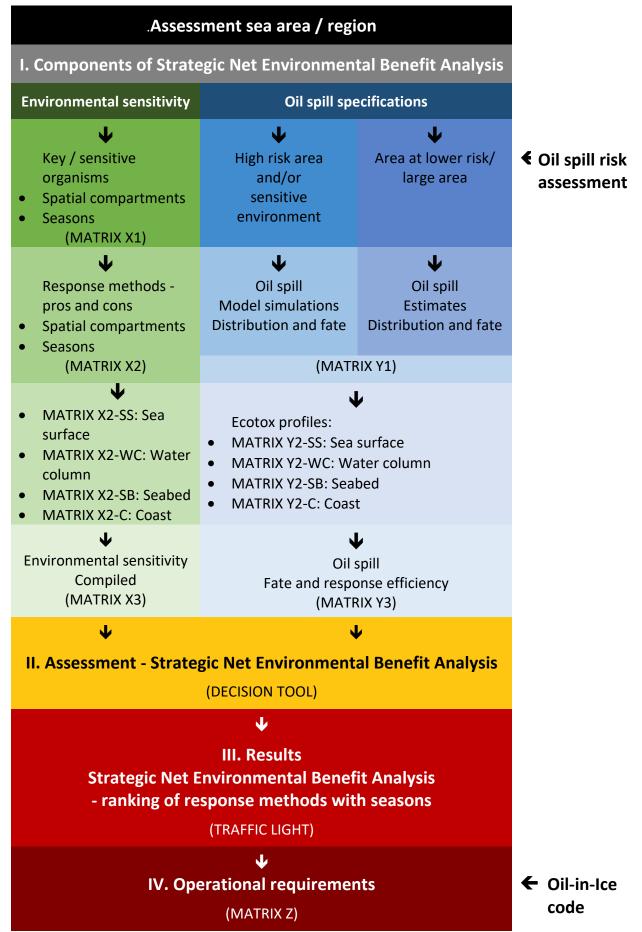


Figure 1. Flowchart for sNEBA components, assessment and results followed by operational requirements including oil-in-ice code.

Damage reduction

The damage reduction (Matrix X3) is defined as the reduction in negative environmental effect by the oil spill and oil spill responses. It is given in percent (%) for each oil spill response method and for each spatial compartment calculated from the efficiency estimates. The efficiency estimates of each response method are given for optimal use and conditions and based on Fritt-Rasmussen & Wegeberg (2017, and references herein).

sNEBA process

The components and steps in the strategic net environmental benefit analysis (sNEBA) for oil spill in a specific sea area is presented in Figure 1.

When an assessment area/region has been selected (0, black), the flow-chart shows the components and input to go into the analysis and form base for the assessments (I, grey). The gathering of this knowledge, which follows two tracks, 1) the environmental information needs (green); and 2) oil specifications, characterization and ecotoxicology (blue), is based on 6 matrices (X1-3 and Y1-3), including 8 sub-matrices (X2-SS, WC, SB, C) and Y2-SS, WC, SB, C).

Hereafter the assessment – the strategic net environmental benefit analysis (sNEBA) – will follow (II, yellow), based on a decision tool.

At present, it is planned, that the results from the sNEBA (III, red) will be ranked with traffic light colours for intuitive comprehending and for each oil spill response method for each season (Figure 2). Please note as the development of the sNEBA tool now is on-going, changes to the matrices, including number, input and order, may occur after this deliverable.

FULL STOP The use of the oil spill response methods will not give an overall environmental benefit for this season EXPERT JUDGEMENT The use of the oil spill response methods will have to be assessed by experts to evaluate the overall environmental benefit for this season GO The use of the oil spill response methods will give an overall environmental benefit for this season

Figure 2. Traffic light to indicate the environmental recommendation of using a particular oil spill response method in a selected assessment area and for each of the four seasons, spring, summer, autumn and winter.

The results from the sNEBA will answer the question regarding "will we?" when considering using a particular oil spill response method, and then lead straight into the assessment of "can we?" by the operational requirements (IV, brown) (Figure 1). The matrix for the operational requirements is presented in D5.4.

Environmental matrices

Environmental sensitivity

MATRIX X1 – Key / sensitive organisms according to seasons

Season	Sea surface	Water column	Seabed	Coast
Spring	 Seabirds; migrating Marine mammals Marine turtles 	 Plankton Pelagic fish; spawning, larvae Benthos spawning 	 Benthos; bivalves, crustaceans, polychaetes, echinoderms Demersal fish Kelp 	 Intertidal community organisms
Summer	 Seabirds; migrating Marine mammals Marine turtles 	 Plankton Pelagic fish; larvae Benthos spawning 	 Benthos; bivalves, crustaceans, polychaetes, echinoderms Demersal fish Kelp 	 Granisms Kelp forest organisms Coastal fish
Autumn	 Seabirds; migrating Marine mammals Marine turtles 	PlanktonPelagic fish	 Benthos; bivalves, crustaceans, polychaetes, echinoderms Demersal fish Kelp 	 Intertidal community organisms
Winter	 Seabirds; migrating Marine mammals Marine turtles 	• Pelagic fish	 Benthos; bivalves, crustaceans, polychaetes, echinoderms Demersal fish Kelp 	 Kelp forest organisms Coastal fish

		Sea surf	ace (X2-SS)	Water column (0-50 m) (X2-WC)	Seabed	(X2-SB)		Coast	(X2-C)	
Oil spill response method	Season	Key organisms	Poter environ effe	mental	Key organisms	enviro	ential nmental ects	Key organisms	enviro	ential nmental ects	Key organisms	enviror	ential nmental ects
			Pros	Cons		Pros	Cons		Pros	Cons		Pros	Cons
Mechanical	Spring												
recovery	Summer												
	Autumn												
	Winter												
	Spring												
Dispersion	Summer		SEF				SF						
Dispersion	Autumn							PPCI					
	Winter												
	Spring												
ISB	Summer				PAC						ch		
130	Autumn							\mathbf{OO}			JU.		
	Winter												
	Spring												
Do nothing	Summer												
Do notning	Autumn												
	Winter												

MATRIX X2 – SS (sea surface)

Oil spill		Sea surface					
response	Season		Potential environmental effects				
method		Key organisms	Pros	Cons			
Mechanical	Spring	 Seabirds; migrating Marine mammals Marine turtles 	Oil is removed from the environment	Smother and toxic effects from non- recovered oil			
	Summer	Seabirds; breeding, moultingMarine mammalsMarine turtles	Oil is removed from the environment	Smother and toxic effects from non- recovered oil			
recovery	Autumn	Seabirds; moulting, migratingMarine mammalsMarine turtles	Oil is removed from the environment	Smother and toxic effects from non- recovered oil			
	Winter	Seabirds; aggregationsMarine mammalsMarine turtles	Oil is removed from the environment	Smother and toxic effects from non- recovered oil			
	Spring	 Seabirds; migrating Marine mammals Marine turtles 	 Oil is removed from sea surface 	 Impact from dispersant on feather structure Increased combined effects on feather structure from oil+dispersant 			
Dispersion	Summer	 Seabirds; breeding, moulting Marine mammals Marine turtles 	 Oil is removed from sea surface 	 Impact from dispersant on feather structure Increased combined effects on feather structure from oil+dispersant 			
	Autumn	 Seabirds; moulting, migrating Marine mammals Marine turtles 	 Oil is removed from sea surface 	 Impact from dispersant on feather structure Increased combined effects on feather structure from oil+dispersant 			
	Winter	 Seabirds; aggregations Marine mammals Marine turtles 	 Oil is removed from sea surface 	 Impact from dispersant on feather structure Increased combined effects on feather structure from oil+dispersant 			
ISB -	Spring	 Seabirds; migrating Marine mammals Marine turtles 	 Oil is removed from sea surface Acute toxic volatile oil compounds are combusted 	 Smoke and soot deposition Burning residues Hazardous compounds; dioxin, PAHs 			
	Summer	 Seabirds; breeding, moulting Marine mammals Marine turtles 	 Oil is removed from sea surface Acute toxic volatile oil compounds are combusted 	 Smoke and soot deposition Burning residues Hazardous compounds; dioxin, PAHs 			

	Autumn	 Seabirds; moulting, migrating Marine mammals Marine turtles 	 Oil is removed from sea surface Acute toxic volatile oil compounds are combusted 	 Smoke and soot deposition Burning residues Hazardous compounds; dioxin, PAHs
	Winter	Seabirds; aggregationsMarine mammalsMarine turtles	 Oil is removed from sea surface Acute toxic volatile oil compounds are combusted 	 Smoke and soot deposition Burning residues Hazardous compounds; dioxin, PAHs
Do nothing	Spring	Seabirds; migratingMarine mammalsMarine turtles	 Some oil types may evaporate and/or naturally degrade relatively fast 	Oil smotherToxic effects
	Summer	 Seabirds; breeding, moulting Marine mammals Marine turtles 	 Some oil types may evaporate and/or naturally degrade relatively fast 	Oil smotherToxic effects
	Autumn	 Seabirds; moulting, migrating Marine mammals Marine turtles 	 Some oil types may evaporate and/or naturally degrade relatively fast 	Oil smotherToxic effects
	Winter	 Seabirds; aggregations Marine mammals Marine turtles 	 Some oil types may evaporate and/or naturally degrade relatively fast 	Oil smotherToxic effects

Oil spill		Water column (0-50 m)					
response	Season	Potential environmental effects					
method		Key organisms / processes	Pros	Cons			
	Spring	PlanktonPelagic fish; spawning, larvaeBenthos spawning	Oil is removed from the environment	Dispersion forced by mechanical activities			
Mechanical recovery	Summer	 Plankton Pelagic fish; larvae Benthos spawning 	Oil is removed from the environment	Dispersion forced by mechanical activities			
	Autumn	PlanktonPelagic fish	Oil is removed from the environment	Dispersion forced by mechanical activities			
	Winter	Pelagic fish	Oil is removed from the environment	Dispersion forced by mechanical activities			
	Spring	 Plankton Pelagic fish; spawning, larvae Benthos spawning 	 Dilution below toxic concentrations Potential increase of degradations rate 	 Oil is not removed from environment Potential toxic oil concentrations Chemicals are added to the effect of oil + cocktail effects of dispersant+oil Uptake of oil droplets Oxygen consumption 			
Dispersion	Summer	 Plankton Pelagic fish; larvae Benthos spawning 	 Dilution below toxic concentrations Potential increase of degradations rate 	 Oil is not removed from environment Potential toxic oil concentrations Chemicals are added to the effect of oil + cocktail effects of dispersant+oil Uptake of oil droplets 			
	Autumn	 Plankton Pelagic fish 	 Dilution below toxic concentrations Potential increase of degradations rate 	 Oil is not removed from environment Potential toxic oil concentrations Chemicals are added to the effect of oil + cocktail effects of dispersant+oil Uptake of oil droplets 			
	Winter	• Pelagic fish	 Dilution below toxic concentrations Potential increase of degradations rate 	 Oil is not removed from environment Potential toxic oil concentrations Chemicals are added to the effect of oil + cocktail effects of dispersant+oil Uptake of oil droplets 			
ICP	Spring	 Plankton Pelagic fish; spawning, larvae Benthos spawning 	 Acute toxic water soluble oil compounds are combusted 	Sinking residues and particles from combustion			
ISB	Summer	 Plankton Pelagic fish; larvae Benthos spawning 	 Acute toxic water soluble oil compounds are combusted 	 Sinking residues and particles from combustion 			

MATRIX X2 – WC (water column)

	Autumn	PlanktonPelagic fish	 Acute toxic water soluble oil compounds are combusted 	Sinking residues and particles from combustion
	Winter	• Pelagic fish	 Acute toxic water soluble oil compounds are combusted 	 Sinking residues and particles from combustion
	Spring	 Plankton Pelagic fish; spawning, larvae Benthos spawning 	 Buoyant and surface drifting oil slick may not affect water column organisms 	 Toxic concentrations from natural dispersion
Do nothing	Summer	PlanktonPelagic fish; larvaeBenthos spawning	 Buoyant and surface drifting oil slick may not affect water column organisms 	 Toxic concentrations from natural dispersion
Do nothing	Autumn	PlanktonPelagic fish	 Buoyant and surface drifting oil slick may not affect water column organisms 	 Toxic concentrations from natural dispersion
	Winter	Pelagic fish	 Buoyant and surface drifting oil slick may not affect water column organisms 	 Toxic concentrations from natural dispersion

MATRIX X2 – SB (seabed)

Oil spill		Seabed							
response	Season		Potential environmental effects						
method		Key organisms / processes	Pros	Cons					
	Spring	 Benthos; bivalves, crustaceans, polychaetes, echinoderms Demersal fish Kelp 	Oil is removed from the environment	 In more shallow areas oil may reach seabed fauna from mechanical activities 					
Mechanical	Summer	 Benthos; bivalves, crustaceans, polychaetes, echinoderms Demersal fish Kelp 	Oil is removed from the environment	 In more shallow areas oil may reach seabed fauna from mechanical activities 					
recovery	Autumn	 Benthos; bivalves, crustaceans, polychaetes, echinoderms Demersal fish Kelp 	Oil is removed from the environment	 In more shallow areas oil may reach seabed fauna from mechanical activities 					
	Winter	 Benthos; bivalves, crustaceans, polychaetes, echinoderms Demersal fish Kelp 	Oil is removed from the environment	 In more shallow areas oil may reach seabed fauna from mechanical activities 					
	Spring	 Benthos; bivalves, crustaceans, polychaetes, echinoderms Demersal fish Kelp 	 Potential increase of degradations rate 	 In more shallow areas dispersed oil may reach the sea bed fauna in toxic concentrations 					
Dispersion	Summer	 Benthos; bivalves, crustaceans, polychaetes, echinoderms Demersal fish Kelp 	 Potential increase of degradations rate 	 In more shallow areas dispersed oil may reach the sea bed fauna in toxic concentrations 					
	Autumn	 Benthos; bivalves, crustaceans, polychaetes, echinoderms Demersal fish Kelp 	 Potential increase of degradations rate 	 In more shallow areas dispersed oil may reach the sea bed fauna in toxic concentrations 					
	Winter	 Benthos; bivalves, crustaceans, polychaetes, echinoderms Demersal fish Kelp 	 Potential increase of degradations rate 	 In more shallow areas dispersed oil may reach the sea bed fauna in toxic concentrations 					
ISB	Spring	 Benthos; bivalves, crustaceans, polychaetes, echinoderms Demersal fish Kelp 	 Oil volume reduced and removed from the environment 	 Uptake of sinking residues and water surface deposited particles from combustion by, e.g., filtration Covering thallus surface may inhibit photosynthesis 					
	Summer	 Benthos; bivalves, crustaceans, polychaetes, echinoderms Demersal fish Kelp 	 Oil volume reduced and removed from the environment 	 Uptake of sinking residues and water surface deposited particles from combustion by, e.g., filtration Covering thallus surface may inhibit photosynthesis 					

	Autumn	 Benthos; bivalves, crustaceans, polychaetes, echinoderms Demersal fish Kelp 	 Oil volume reduced and removed from the environment 	 Uptake of sinking residues and water surface deposited particles from combustion by, e.g., filtration Covering thallus surface may inhibit photosynthesis
	Winter	 Benthos; bivalves, crustaceans, polychaetes, echinoderms Demersal fish Kelp 	 Oil volume reduced and removed from the environment 	 Uptake of sinking residues and water surface deposited particles from combustion by, e.g., filtration Covering thallus surface may inhibit photosynthesis
	Spring	 Benthos; bivalves, crustaceans, polychaetes, echinoderms Demersal fish Kelp 	 Buoyant and surface drifting oil slick may not affect seabed organisms 	In more shallow areas untreated oil may smother seabed fauna
Do nothing	Summer	 Benthos; bivalves, crustaceans, polychaetes, echinoderms Demersal fish Kelp 	 Buoyant and surface drifting oil slick may not affect seabed organisms 	 In more shallow areas untreated oil may smother seabed flora and fauna
Do notining	crustaceans, r Autumn echinoderms	Demersal fishKelp	 Buoyant and surface drifting oil slick may not affect seabed organisms 	 In more shallow areas untreated oil may smother seabed flora and fauna
	Winter	 Benthos; bivalves, crustaceans, polychaetes, echinoderms Demersal fish Kelp 	 Buoyant and surface drifting oil slick may not affect seabed organisms 	 In more shallow areas untreated oil may smother seabed flora and fauna

MATRIX X2 – C (coast)

Oil spill		Coast						
response	Season	Key organisms / processes	Potential environmental effects					
method		key organisms / processes	Pros	Cons				
Mechanical	Spring / summer	 Capelin Intertidal community organisms Kelp forest organisms 	Oil is removed from the environment	 Low efficiency may allow oil to reach coast Risk for effects on growth and reproduction 				
recovery	Autumn / winter	Intertidal community organismsKelp forest organisms	Oil is removed from the environment	 Low efficiency may allow oil to reach coast Risk for effects on growth and reproduction 				
	Spring / summer	 Capelin Intertidal community organisms Kelp forest organisms 	Oil is combated offshore	 In more shallow areas dispersed oil may affect kelp and associated fauna 				
Dispersion	Autumn / winter	 Intertidal community organisms Kelp forest organisms 	Oil is combated offshore	 In more shallow areas dispersed oil may affect kelp and associated fauna 				
ICD	Spring / summer	Intertidal community organismsKelp forest organisms	Oil is combated offshore	 Floating residues may reach the coast and leak toxic compounds 				
ISB	Autumn / winter	Intertidal community organismsKelp forest organisms	Oil is combated offshore	Floating residues may reach the coast and leak toxic compounds				
Do nothing	Spring / summer	 Capelin Intertidal community organisms Kelp forest organisms 		Smother and toxic effects on organisms				
5	Autumn / winter	Intertidal community organismsKelp forest organisms		Smother and toxic effects on organisms				

MATRIX X3 (Environmental sensitivity, compiled and commented)

Oil spill response method	Season	Sea surface	Score	Water column	Score	Seabed	Score	Coast	Score
	Spring								
Mechanical	Summer								
recovery	Autumn								
	Winter								
Dispersion	Spring								
	Summer								
	Autumn								
	Winter								
	Spring								
ISB	Summer								
130	Autumn								
	Winter								
	Spring								
Do nothing	Summer								
	Autumn								
	Winter								

Oil spill specifications

Oil spill characteristics

MATRIX Y1

	Oil volume	Sea water volume	Sea surface area oil contaminated (km²)	Evaporation		Weathering			
Oil type	released (rate/total)	oil contaminated		(%)	water content	viscosity	density	Trajectory	
Crude oils								Мар	
Raffinated oils								Мар	

Ecotoxicological profiles and information for each spatial compartment

MATRIX Y2

	Smother effects	Exposure effects	Effects by uptake	Effect concentration EC ₅₀ mg / L ¹	Lethal concentration LC ₅₀ mg / L ²	Population effects	Cascade effects	Sea water volume of EC_{50} conc.	Sea water volume of LC_{50} conc.	Sea surface area effected by EC ₅₀ /LC ₅₀ conc. (km ²)	Shoreline potentially effected by smothering (m/km)
Organism(s)											
for each											
spatial											
compartment,											
e.g.:											
Seabirds											
Copepods											
Pelagic larvae											
Macroalgae											

¹Concentration at which tested population is 50% effected compared to maximal effect. ²Concentration at which 50 % of tested population is dead.

Oil spill fate and damage reduction from response

MATRIX Y3

Oil spill resp. methods	Efficiency (%)	Season	Sea surface	Damage red. (%)	Water column	Damage red. (%)	Seabed	Damage red. (%)	Coast	Damage red. (%)
	20-30	Spring	BouyancySlick thicknessSea ice incapsulation		 Oil dispersed forced by mechanical activity 					
Mechanical	20-30	Summer	BouyancySlick thickness		 Oil dispersed forced by mechanical activity 					
recovery	20-30	Autumn	BouyancySlick thickness		 Oil dispersed forced by mechanical activity 					
	20-30	Winter	BouyancySlick thicknessSea ice incapsulation		Oil dispersed forced by mechanical activity					
	80-100	Spring	BouyancySlick thicknessSea ice incapsulation		Dilution capacitySea ice		 Depth of dispersion Dilution capacity Sedimentation			
Discoursion	80-100	Summer	BouyancySlick thickness		Dilution capacity		 Depth of dispersion Dilution capacity			
Dispersion	80-100	Autumn	BouyancySlick thickness		Dilution capacity		 Depth of dispersion Dilution capacity			
	80-100	Winter	BouyancySlick thicknessSea ice incapsulation		• Sea ice		Depth of dispersionDilution capacity			
	70-90	Spring	BouyancySlick thicknessSea ice incapsulation		Sinking of residues		Sedimentation of residues			
100	70-90	Summer	BouyancySlick thickness		Sinking of residues		 Sedimentation of residues 			
ISB	70-90	Autumn	BouyancySlick thickness		Sinking of residues		 Sedimentation of residues 			
	70-90	Winter	BouyancySlick thicknessSea ice incapsulation		Sinking of residues		Sedimentation of residues			
	0-100	Spring	 Oil in icePhoto oxidation 		Microorganisms					
Do nothing	0-100	Summer	Photo oxidation		Microorganisms					
	0-100	Autumn	Photo oxidation		Microorganisms					
	0-100	Winter	Oil in ice		Microorganisms					

References

Fritt-Rasmussen, J. 2017. Part I: Review of techniques for combating oil spill at sea; mechanical recovery, chemical dispersion, in situ burning (ISB). In: Wegeberg, S., Fritt-Rasmussen, J. & Boertmann, D. 2017. Oil spill response in Greenland: Net Environmental Benefit Analysis, NEBA, and environmental monitoring. Aarhus University, DCE – Danish Centre for Environment and Energy, 92 pp. Scientific Report from DCE – Danish Centre for Environment and Energy No. 221 <u>http://dce2.au.dk/pub/SR221.pdf</u>. 12-29 pp.

Wegeberg, S., Fritt-Rasmussen, J. & Boertmann, D. 2017. Oil spill response in Greenland: Net Environmental Benefit Analysis, NEBA, and environmental monitoring. Aarhus University, DCE – Danish Centre for Environment and Energy, 92 pp. Scientific Report from DCE – Danish Centre for Environment and Energy No. 221 http://dce2.au.dk/pub/SR221.pdf

Wegeberg, S., Rigét, F., Gustavson, K. & Mosbech, A. 2016. Store Hellefiskebanke, Grønland. Miljøvurdering af oliespild samt potentialet for oliespildsbekæmpelse [Store Hellefiskebanke, Greenland. Environmental assessment of oil spill and the potential for oil spill combat]. Aarhus Universitet, DCE – Nationalt Center for Miljø og Energi, 98 s. - Videnskabelig rapport fra DCE - Nationalt Center for Miljø og Energi nr. 216 (www.dce2.au.dk/pub/SR216.pdf).